минобрнауки РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Уфимский государственный авиационный технический университет» (ФГБОУ ВО «УГАТУ»)

К. Маркса ул., д. 12, Уфа, 450008. телефон: +7 (347) 272-63-07. факс: +7 (347) 272-29-18. e-mail: office@ugatu.su

29.04.16 No 440/1204-13.

«УТВЕРЖДАЮ»
Проректор по научной и инновационной деятельности ФГБОУ ВО «Уфимский государственный авиационный

таку до фессор

О. В. Даринцев 2016 года

Отзыв

ведущей организации федерального государственного бюджетного образовательного учреждения высшего образования «Уфимский государственный авиационный технический университет» диссертацию Славутского Александра Леонидовича «Моделирование переходных процессов в узлах комплексной нагрузки с нелинейными элементами методом синтетических схем», представленной на соискание ученой степени кандидата технических наук по специальности 05.09.03 электротехнические комплексы и системы

Актуальность и новизна. Диссертационная работа Славутского А.Л. посвящена вопросам численного моделирования режимов работы систем электроснабжения (СЭС). В настоящее время все большее значение приобретают вопросы энергосбережения и качества электроэнергии. Значительную часть потерь электрической энергии составляют потери от несимметричного режима работы трехфазных сетей. Несимметрия токов и напряжений может возникнуть при подключении к трехфазной сети мощных однофазных нагрузок, при коммутациях и аварийных режимах. Во всех этих случаях в энергосистеме возникают переходные процессы, детальный анализ которых требует численного моделирования. Это особенно актуально для

распределительных сетей среднего напряжения 6-110 кВ. Переходные режимы в комплексных узлах нагрузки распределительных сетей характеризуются значительными «бросками» токов и напряжений и носят нелинейный характер. Моделирование таких переходных режимов с учетом нелинейности нагрузок - достаточно сложная задача, поэтому разработка соответствующих моделей, методик расчета, создание и тестирование программного обеспечения, которым посвящена представленная работа, безусловно актуальны.

Для построения численных алгоритмов и моделирования сложных переходных процессов в СЭС автор использует метод синтетических схем (алгоритм Доммеля), достаточно широко используемый зарубежными исследователями в настоящее время. Однако использование этого метода для моделирования режимов распределительных сетей потребовало создания соответствующих моделей элементов СЭС, построение новых численных алгоритмов. В диссертационной работе показана возможность детального моделирования переходных процессов В энергосистеме фазных координатах, с различными видами несимметрии и способами заземления нейтрали. Это позволяет констатировать не только актуальность работы, но и ее несомненную новизну.

Оценка структуры и общего содержания работы. Структура диссертации является классической для научных работ: обзор литературы и постановка задачи, описание методического аппарата, результаты исследований, выводы, приложения.

Первая глава представляет собой краткий обзор методов моделирования СЭС, моделей отдельных ее элементов и используемого для этого программного обеспечения.

Bo второй главе математический описан аппарат, методика моделирования, алгоритмы созданного автором программного обеспечения. Ha примере сравнения результатами моделирования среде Matlab/Simulink показана эффективность и сходимость предлагаемых

численных алгоритмов. Приводится пример моделирования переходного процесса при повреждении воздушной линии электропередач.

3 посвящена описанию используемых автором моделей элементов СЭС: линий электропередач, индуктивностей и трансформаторов, полупроводниковых элементов И асинхронных двигателей. Линии электропередач моделируются в виде П-схем и модель подходит для учета линий электропередач при изучении переходных процессов с нарушением симметрии трехфазной системы и замыканиях на землю, представляют интерес в СЭС с изолированной и компенсированной нейтралью. Показана возможность произвольного задания ВАХ нелинейных и полупроводниковых элементов. Особый интерес представляют модели индуктивных элементов и трансформаторов, позволяющие учитывать гистерезисные явления и оценивать соответствующие искажения тока и напряжения при магнитном насыщении. Модель асинхронного двигателя представлена в фазных координатах и позволяет отдельно рассматривать процессы в статоре и роторе. Достоинством описанных моделей можно считать тот факт, что в рамках предлагаемых алгоритмов расчета они могут использоваться комплексе, С учетом ИΧ взаимного влияния распределительных сетях СЭС.

В четвертой главе диссертации рассмотрен ряд примеров переходных режимов в узлах комплексной нагрузки с элементами, модели которых описаны предыдущей главе. Проиллюстрирован работы расчет однофазного преобразователя частоты, состоящего мостового ИЗ выпрямителя и инвертора с ШИМ управлением, переходные процессы в узлах нагрузки асинхронными двигателями, трехобмоточными трансформаторами. Рассмотрен ряд каскадных переходных режимов с коммутациями и короткими замыканиями. Показана возможность достаточно детально анализировать сложные несимметричные режимы В распределительных сетях.

В заключении сформулированы основные результаты и выводы. Список использованной литературы состоит из 120 наименований, из которых 14 — на английском языке. Оформление работы в целом соответствует ГОСТ и требованиям ВАК.

Значимость полученных автором диссертации результатов для электроэнергетики. Разработанная автором методика расчета переходных процессов в системах электроснабжения с учетом нелинейности нагрузок позволяет анализировать сложные и каскадные переходные процессы в узлах комплексной нагрузки при нарушении симметрии трехфазных электрических сетей. Разработанное в ходе исследований программное обеспечение дает возможность моделировать узлы комплексной нагрузки СЭС различной топологии с несколькими нелинейными элементами, что важно для анализа их взаимного влияния при совместной работе в переходных режимах.

Степень обоснованности и достоверность научных положений и выводов. В целом научные положения и выводы, сформулированные в диссертации, представляются обоснованными и достоверными, обладающими определенной научной новизной, базирующимися на адекватном использовании теоретических основ электротехники, дискретной математики и приемов программирования.

Пункт 1 заключения констатирует достоинства предлагаемых алгоритмов и методики численных расчетов. Это положение не вызывает сомнений и широкие возможности метода синтетических схем достаточно хорошо проиллюстрированы в диссертации.

Пункт 2, касающийся моделирования преобразователя частоты с ШИМ управлением, сформулирован слишком кратко, является просто констатацией проделанной работы.

Пункты 3 и 4, посвященные моделированию индуктивных элементов и трансформаторов с учетом гистерезисных явлений в сердечнике и взаимной индуктивности обмоток, обладают новизной и могут считаться, в целом, обоснованными.

Пункт 5 о достоинствах модели асинхронного двигателя в целом обоснован, однако следовало бы более четко обозначить новизну.

Пункты 6 и 7 о реализованном программном обеспечении, позволяющем анализировать сложные переходные режимы с учетом взаимовлияния элементов системы, обоснованы и достоверны.

Рекомендации по использованию результатов и выводов, приведенных в диссертации. Разработанные автором диссертации методики расчетов и программное обеспечение могут применяться предприятиями электроэнергетики и производителями электроэнергетического оборудования для моделирования сложных процессов в энергосистеме при анализе режимов ее работы, проектировании и настройке оборудования. Кроме того, полученные автором результаты можно рекомендовать к применению в учебной деятельности, для наглядной демонстрации электромагнитных и электромеханических переходных процессов в системах электроснабжения.

При этом, при детальном рассмотрении диссертационного исследования возникают следующие вопросы и замечания:

- 1. Общие вопросы дискуссионного характера:
- почему для проверки разработанных алгоритмов и программного обеспечения выбраны именно эти схемы и режимы узлов нагрузки?
- почему в рассмотренных примерах не учтены дугогасящие реакторы, нелинейные ограничители перенапряжений?
- 2. При анализе устройств, содержащих контуры со взаимной индуктивностью (например, многофазные трансформаторы), следовало бы отметить, как соединены обмотки согласно или встречно.
- 3. При численном расчете пусковых режимов мощных высоковольтных асинхронных двигателей необходимо было отметить конструктивные особенности таких машин, так как они влияют на характер процесса.
- 4. Результаты анализа различных нагрузок сопровождаются большим числом графиков, однако интересно было бы отметить, какие результаты совпадают с известными данными, а какие получены вновь.

Сформулированные замечания не влияют на общую положительную оценку диссертационной работы Славутского А. Л. Диссертация представляет собой законченную научно-квалификационную работу, в которой решена актуальная задача — разработка методики численного моделирования и программного обеспечения для анализа переходных процессов в узлах комплексной нагрузки систем электроснабжения. Практическая значимость работы подтверждена актами о внедрении. Полученные в работе результаты и проведенные исследования имеют перспективы дальнейшего развития.

Автореферат и опубликованные работы в полной мере отражают содержание диссертации. По теме исследования А. Л. Славутским опубликовано 16 работ: из них 4 статьи в рецензируемых журналах из перечня ВАК Министерства образования и науки РФ, 2 свидетельства о регистрации программ для ЭВМ.

Заключение. Исследование Славутского Александра Леонидовича «Моделирование переходных процессов в узлах комплексной нагрузки с нелинейными элементами методом синтетических схем» соответствует паспорту специальности 05.09.03 - Электротехнические комплексы и системы (технические науки), требованиям п.п.9-14 «Положения о порядке степеней», присуждения ученых утвержденным постановлением Правительства Российской Федерации (ot 24.09.2013 Γ. №842), предъявляемых к диссертациям на соискание ученой степени кандидата технических наук, а ее автор – Славутский А. Л. заслуживает присуждения ученой степени кандидата технических наук по специальности 05.09.03 -Электротехнические комплексы и системы (технические науки).

Отзыв на диссертацию подготовлен доктором технических наук, профессором кафедры электромеханики федерального государственного бюджетного образовательного учреждения высшего образования «Уфимский государственный авиационный технический университет» Рогинской Любовью Эммануиловной. Отзыв обсужден и утвержден на заседании

кафедры электромеханики федерального государственного бюджетного образовательного учреждения высшего образования «Уфимский государственный авиационный технический университет» 27 апреля 2016 года, протокол № 10 от 27 апреля 2016 года.

Заведующий кафедрой «Электромеханика» ФГБОУ ВО «Уфимский государственный авиационный технический университет», д.т.н., профессор Докторская диссертация защищена по специальности 05.13.05 — Элементы и устройства вычислительной техники и систем управления

Исмагилов Флюр Рашитович

Почтовый адрес: 450008, Российская Федерация, Приволжский Федеральный округ, Республика Башкортостан, г. Уфа, ул. К. Маркса, д. 12, ФГБОУ ВО «Уфимский государственный авиационный технический университет», кафедра «Электромеханика»

тел/факс: 8 (347) 273-77-87 e-mail: kafedra em@list.ru

Подпись Истививыевой Э. Д.
Удостоверяю « Я » ОЧ 20 6 г.
Начальник управления по делопроизводству
и референтуре УГАТУ УШЕЙЕНОЙ .